Вычислить определитель матрицы онлайн. Разложение определителя по строке Разложение по 3 столбцу матрицы

Задание. Вычислить определитель , разложив его по элементам какой-то строки или какого-то столбца.

Решение. Предварительно выполним элементарные преобразования над строками определителя, сделав как можно больше нулей либо в строке, либо в столбце. Для этого вначале от первой строки отнимем девять третьих, от второй - пять третьих и от четвертой - три третьих строки, получаем:

Полученный определитель разложим по элементам первого столбца:

Полученный определитель третьего порядка также разложим по элементам строки и столбца, предварительно получив нули, например, в первом столбце. Для этого от первой строки отнимаем две вторые строки, а от третьей - вторую:

Ответ.

12. Слау 3 порядка

1. Правило треугольника

Схематически это правило можно изобразить следующим образом:

Произведение элементов в первом определителе, которые соединены прямыми, берется со знаком "плюс"; аналогично, для второго определителя - соответствующие произведения берутся со знаком "минус", т.е.

2. Правило Саррюса

Справа от определителя дописывают первых два столбца и произведения элементов на главной диагонали и на диагоналях, ей параллельных, берут со знаком "плюс"; а произведения элементов побочной диагонали и диагоналей, ей параллельных, со знаком "минус":

3. Разложение определителя по строке или столбцу

Определитель равен сумме произведений элементов строки определителя на их алгебраические дополнения. Обычно выбирают ту строку/столбец, в которой/ом есть нули. Строку или столбец, по которой/ому ведется разложение, будет обозначать стрелкой.

Задание. Разложив по первой строке, вычислить определитель

Решение.

Ответ.

4.Приведение определителя к треугольному виду

С помощью элементарных преобразований над строками или столбцами определитель приводится к треугольному виду и тогда его значение, согласно свойствам определителя, равно произведению элементов стоящих на главной диагонали.

Пример

Задание. Вычислить определитель приведением его к треугольному виду.

Решение. Сначала делаем нули в первом столбце под главной диагональю. Все преобразования будет выполнять проще, если элемент будет равен 1. Для этого мы поменяем местами первый и второй столбцы определителя, что, согласно свойствам определителя, приведет к тому, что он сменит знак на противоположный:

Напомним теорему Лапласа:
Теорема Лапласа:

Пусть в определителе d порядка n произвольно выбраны k строк (или k столбцов), . Тогда сумма произведений всех миноров k-го порядка, содержащихся в выбранных строках, на их алгебраические дополнения равна определителю d.

Для вычисления определителей в общем случае k берут равным 1. Т.е. в определителе d порядка n произвольно выбрана строка (или столбец). Тогда сумма произведений всех элементов, содержащихся в выбранной строке (или столбце), на их алгебраические дополнения равна определителю d.

Пример:
Вычислить определитель

Решение:

Выберем произвольную строку или столбец. По причине, которая станет очевидной чуть позже, ограничим свой выбор или третьей строкой или четвертым столбцом. И остановимся на третьей строке.

Воспользуемся теоремой Лапласа.

Первый элемент выбранной строки равен 10, он стоит в третьей строке и первом столбце. Вычислим алгебраическое дополнение к нему, т.е. найдем определитель, полученный вычеркиванием столбца и строки, на которых стоит этот элемент (10) и выясним знак.

«плюс, если сумма номеров всех строк и столбцов, в которых расположен минор M четна, и минус, если эта сумма нечетна.»
А минор мы взяли состоящий из одного единственного элемента 10, который стоит в первом столбце третьей строки.

Итак:


Четвертое слагаемое этой суммы равно 0, именно поэтому стоит выбирать строки или столбцы с максимальным числом нулевых элементов.

Ответ: -1228

Пример:
Вычислить определитель:

Решение:
Выберем первый столбец, т.к. два элемента в нем равны 0. Разложим определитель по первому столбцу.


Каждый из определителей третьего порядка разложим по первой второй строке


Каждый из определителей второго порядка разложим по первому столбцу


Ответ: 48
Замечание: при решении этой задачи не использовались формулы для вычисления определителей 2-го и 3-го порядков. Использовалось только разложение по строке или столбцу. Которое приводит к понижению порядка определителей.

Для того что бы вычислить определитель матрицы четвертого порядка или выше можно разложить определитель по строке или столбцу или применить метод Гаусса и привести определитель к треугольному виду . Рассмотрим разложение определителя по строке или столбцу.

Определитель матрицы равен сумме умноженных элементов строки определителя на их алгебраические дополнения:

Разложение по i -той строке.

Определитель матрицы равен сумме умноженных элементов столбца определителя на их алгебраические дополнения:

Разложение по j -той строке.

Для облегчения разложение определителя матрицы обычно выбирают ту строку/столбец, в которой/ом максимальное количество нулевых элементов.

Пример

Найдем определитель матрицы четвертого порядка.

Будем раскладывать этот определитель за столбцом №3

Сделаем ноль вместо элемента a 4 3 =9 . Для этого из строки №4 вычтем от соответствующие элементы строки №1 умноженные на 3 .
Результат записываем в строке №4 все остальные строки переписываем без изменений.


Вот мы и сделали нолями все элементы, кроме a 1 3 = 3 в столбце № 3 . Теперь можно преступить и к дальнейшему разложению определителя за этим столбцом.


Видим, что только слагаемое №1 не превращается в ноль, все остальные слагаемые будут нолями, так как они умножаются на ноль.
Значит, далее нам надо разложить, только один определитель:

Будем раскладывать этот определитель за строкой №1 . Сделаем некоторые преобразования, что бы облегчить дальнейшие расчеты.

Видим, что в этой строке есть два одинаковых числа, поэтому вычтем из столбца №3 столбец №2 , и результат запишем в столбце №3 , от этого величина определителя не изменится.

Далее нам надо сделать ноль вместо элемента a 1 2 =4 . Для этого мы элементы столбца №2 умножим на 3 и вычтем от него соответствующие элементы столбца №1 умноженные на 4 . Результат записываем в столбце №2 все остальные столбцы переписываем без изменений.


Но при этом надо не забывать, что если мы умножаем столбец №2 на 3 , то и весь определитель увеличится в 3 . А что бы он не изменился, значит надо его поделить на 3 .

Для определителя четвёртого и более высоких порядков обычно применяются иные методы вычисления, нежели использование готовых формул как для вычисления определителей второго и третьего порядков . Один из методов вычисления определителей высших порядков - использование следствия из теоремы Лапласа (саму теорему можно посмотреть, например, в книге А.Г. Куроша «Курс высшей алгебры»). Это следствие позволяет разложить определитель по элементам некоторой строки или столбца. При этом вычисление определителя n-го порядка сводится к вычислению n определителей (n-1)-го порядка. Именно поэтому такое преобразование именуют понижением порядка определителя. Например, вычисление определителя четвёртого порядка сводится к нахождению четырёх определителей третьего порядка.

Допустим, нам задана квадратная матрица n-го порядка, т.е. $A=\left(\begin{array} {cccc} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{n1} & a_{n2} & \ldots & a_{nn} \\ \end{array} \right)$. Вычислить определитель этой матрицы можно, разложив его по строке или по столбцу.

Зафиксируем некоторую строку, номер которой равен $i$. Тогда определитель матрицы $A_{n\times n}$ можно разложить по выбранной i-й строке, используя следующую формулу:

\begin{equation} \Delta A=\sum\limits_{j=1}^{n}a_{ij}A_{ij}=a_{i1}A_{i1}+a_{i2}A_{i2}+\ldots+a_{in}A_{in} \end{equation}

$A_{ij}$ обозначает алгебраическое дополнение элемента $a_{ij}$. Для подробной информации об этом понятии рекомендую глянуть тему Алгебраические дополнения и миноры . Запись $a_{ij}$ обозначает элемент матрицы или определителя, расположенный на пересечении i-й строки j-го столбца. Для более полной информации можно глянуть тему Матрицы. Виды матриц. Основные термины .

Допустим, мы хотим найти сумму $1^2+2^2+3^2+4^2+5^2$. Какой фразой можно охарактеризовать запись $1^2+2^2+3^2+4^2+5^2$? Можно сказать так: это сумма единицы в квадрате, двойки в квадрате, тройки в квадрате, четвёрки в квадрате и пятёрки в квадрате. А можно сказать покороче: это сумма квадратов целых чисел от 1 до 5. Чтобы выражать сумму более коротко и служит запись с помощью буквы $\sum$ (это греческая буква "сигма").

Вместо $1^2+2^2+3^2+4^2+5^2$ мы можем использовать такую запись: $\sum\limits_{i=1}^{5}i^2$. Буква $i$ именуется индексом суммирования , а числа 1 (начальное значение $i$) и 5 (конечное значение $i$) называются нижним и верхним пределами суммирования соответственно.

Расшифруем запись $\sum\limits_{i=1}^{5}i^2$ подробно. Если $i=1$, то $i^2=1^2$, поэтому первым слагаемым данной суммы будет число $1^2$:

$$ \sum\limits_{i=1}^{5}i^2=1^2+\ldots $$

Следующее целое число после единицы - двойка, поэтому подставляя $i=2$, получим: $i^2=2^2$. Сумма теперь станет такой:

$$ \sum\limits_{i=1}^{5}i^2=1^2+2^2+\ldots $$

После двойки следующее число - тройка, поэтому подставляя $i=3$ будем иметь: $i^2=3^2$. И сумма примет вид:

$$ \sum\limits_{i=1}^{5}i^2=1^2+2^2+3^2+\ldots $$

Осталось подставить лишь два числа: 4 и 5. Если подставить $i=4$, то $i^2=4^2$, а если подставить $i=5$, то $i^2=5^2$. Значения $i$ достигли верхнего предела суммирования, поэтому слагаемое $5^2$ будет последним. Итак, окончательно сумма теперь такова:

$$ \sum\limits_{i=1}^{5}i^2=1^2+2^2+3^2+4^2+5^2. $$

Эту сумму можно и вычислить, банально сложив числа: $\sum\limits_{i=1}^{5}i^2=55$.

Для практики попробуйте записать и вычислить следующую сумму: $\sum\limits_{k=3}^{8}(5k+2)$. Индекс суммирования здесь - буква $k$, нижний предел суммирования равен 3, а верхний предел суммирования равен 8.

$$ \sum\limits_{k=3}^{8}(5k+2)=17+22+27+32+37+42=177. $$

Аналог формулы (1) существует и для столбцов. Формула для разложения определителя по j-му столбцу выглядит следующим образом:

\begin{equation} \Delta A=\sum\limits_{i=1}^{n}a_{ij}A_{ij}=a_{1j}A_{1j}+a_{2j}A_{2j}+\ldots+a_{nj}A_{nj} \end{equation}

Правила, выраженные формулами (1) и (2), можно сформулировать так: определитель равен сумме произведений элементов некоей строки или столбца на алгебраические дополнения этих элементов. Для наглядности рассмотрим определитель четвёртого порядка, записанный в общем виде. Для примера разложим его по элементам четвёртого столбца (элементы этого столбца выделены зелёным цветом):

$$\Delta=\left| \begin{array} {cccc} a_{11} & a_{12} & a_{13} & \normgreen{a_{14}} \\ a_{21} & a_{22} & a_{23} & \normgreen{a_{24}} \\ a_{31} & a_{32} & a_{33} & \normgreen{a_{34}} \\ a_{41} & a_{42} & a_{43} & \normgreen{a_{44}} \\ \end{array} \right|$$ $$ \Delta =\normgreen{a_{14}}\cdot{A_{14}}+\normgreen{a_{24}}\cdot{A_{24}}+\normgreen{a_{34}}\cdot{A_{34}}+\normgreen{a_{44}}\cdot{A_{44}} $$

Аналогично, раскладывая, к примеру, по третьей строке, получим такую формулу для вычисления определителя:

$$ \Delta =a_{31}\cdot{A_{31}}+a_{32}\cdot{A_{32}}+a_{33}\cdot{A_{33}}+a_{34}\cdot{A_{34}} $$

Пример №1

Вычислить определитель матрицы $A=\left(\begin{array} {ccc} 5 & -4 & 3 \\ 7 & 2 & -1 \\ 9 & 0 & 4 \end{array} \right)$, используя разложение по первой строке и второму столбцу.

Нам нужно вычислить определитель третьего порядка $\Delta A=\left| \begin{array} {ccc} 5 & -4 & 3 \\ 7 & 2 & -1 \\ 9 & 0 & 4 \end{array} \right|$. Чтобы разложить его по первой строке нужно использовать формулу . Запишем это разложение в общем виде:

$$ \Delta A= a_{11}\cdot A_{11}+a_{12}\cdot A_{12}+a_{13}\cdot A_{13}. $$

Для нашей матрицы $a_{11}=5$, $a_{12}=-4$, $a_{13}=3$. Для вычисления алгебраических дополнений $A_{11}$, $A_{12}$, $A_{13}$ станем использовать формулу №1 из темы, посвящённой . Итак, искомые алгебраические дополнения таковы:

\begin{aligned} & A_{11}=(-1)^2\cdot \left| \begin{array} {cc} 2 & -1 \\ 0 & 4 \end{array} \right|=2\cdot 4-(-1)\cdot 0=8;\\ & A_{12}=(-1)^3\cdot \left| \begin{array} {cc} 7 & -1 \\ 9 & 4 \end{array} \right|=-(7\cdot 4-(-1)\cdot 9)=-37;\\ & A_{13}=(-1)^4\cdot \left| \begin{array} {cc} 7 & 2 \\ 9 & 0 \end{array} \right|=7\cdot 0-2\cdot 9=-18. \end{aligned}

Как мы нашли алгебраические дополнения? показать\скрыть

Подставляя все найденные значения в записанную выше формулу, получим:

$$ \Delta A= a_{11}\cdot A_{11}+a_{12}\cdot A_{12}+a_{13}\cdot A_{13}=5\cdot{8}+(-4)\cdot(-37)+3\cdot(-18)=134. $$

Как видите, процесс нахождения определителя третьего порядка мы свели к вычислению значений трёх определителей второго порядка. Иными словами, мы понизили порядок исходного определителя.

Обычно в таких простых случаях не расписывают решение подробно, отдельно находя алгебраические дополнения, а уж затем подставляя их в формулу для вычисления определителя. Чаще всего просто продолжают запись общей формулы, - до тех пор, пока не будет получен ответ. Именно так мы станем раскладывать определитель по второму столбцу.

Итак, приступим к разложению определителя по второму столбцу. Вспомогательных вычислений производить не будем, - просто продолжим формулу до получения ответа. Обратите внимание, что во втором столбце один элемент равен нулю, т.е. $a_{32}=0$. Это говорит о том, что слагаемое $a_{32}\cdot A_{32}=0\cdot A_{23}=0$. Используя формулу для разложения по второму столбцу, получим:

$$ \Delta A= a_{12}\cdot A_{12}+a_{22}\cdot A_{22}+a_{32}\cdot A_{32}=-4\cdot (-1)\cdot \left| \begin{array} {cc} 7 & -1 \\ 9 & 4 \end{array} \right|+2\cdot \left| \begin{array} {cc} 5 & 3 \\ 9 & 4 \end{array} \right|=4\cdot 37+2\cdot (-7)=134. $$

Ответ получен. Естественно, что результат разложения по второму столбцу совпал с результатом разложения по первой строке, ибо мы раскладывали один и тот же определитель. Заметьте, что при разложении по второму столбцу мы делали меньше вычислений, так как один элемент второго столбца был равен нулю. Именно исходя из таких соображений для разложения стараются выбирать тот столбец или строку, которые содержат побольше нулей.

Ответ : $\Delta A=134$.

Пример №2

Вычислить определитель матрицы $A=\left(\begin{array} {cccc} -1 & 3 & 2 & -3\\ 4 & -2 & 5 & 1\\ -5 & 0 & -4 & 0\\ 9 & 7 & 8 & -7 \end{array} \right)$, используя разложение по выбранной строке или столбцу.

Для разложения выгоднее всего выбирать ту строку или столбец, которые содержат более всего нулей. Естественно, что в данном случае имеет смысл раскладывать по третьей строке, так как она содержит два элемента, равных нулю. Используя формулу, запишем разложение определителя по третьей строке:

$$ \Delta A= a_{31}\cdot A_{31}+a_{32}\cdot A_{32}+a_{33}\cdot A_{33}+a_{34}\cdot A_{34}. $$

Так как $a_{31}=-5$, $a_{32}=0$, $a_{33}=-4$, $a_{34}=0$, то записанная выше формула станет такой:

$$ \Delta A= -5 \cdot A_{31}-4\cdot A_{33}. $$

Обратимся к алгебраическим дополнениям $A_{31}$ и $A_{33}$. Для их вычисления будем использовать формулу №2 из темы, посвящённой определителям второго и третьего порядков (в этом же разделе есть подробные примеры применения данной формулы).

\begin{aligned} & A_{31}=(-1)^4\cdot \left| \begin{array} {ccc} 3 & 2 & -3 \\ -2 & 5 & 1 \\ 7 & 8 & -7 \end{array} \right|=10;\\ & A_{33}=(-1)^6\cdot \left| \begin{array} {ccc} -1 & 3 & -3 \\ 4 & -2 & 1 \\ 9 & 7 & -7 \end{array} \right|=-34. \end{aligned}

Подставляя полученные данные в формулу для определителя, будем иметь:

$$ \Delta A= -5 \cdot A_{31}-4\cdot A_{33}=-5\cdot 10-4\cdot (-34)=86. $$

В принципе, всё решение можно записать в одну строку. Если пропустить все пояснения и промежуточные вычисления, то запись решения будет такова:

$$ \Delta A= a_{31}\cdot A_{31}+a_{32}\cdot A_{32}+a_{33}\cdot A_{33}+a_{34}\cdot A_{34}=\\= -5 \cdot (-1)^4\cdot \left| \begin{array} {ccc} 3 & 2 & -3 \\ -2 & 5 & 1 \\ 7 & 8 & -7 \end{array} \right|-4\cdot (-1)^6\cdot \left| \begin{array} {ccc} -1 & 3 & -3 \\ 4 & -2 & 1 \\ 9 & 7 & -7 \end{array} \right|=-5\cdot 10-4\cdot (-34)=86. $$

Ответ : $\Delta A=86$.

1.Теорема разложения:

Всякий определитель равен сумме парных произведений элементов какого-либо ряда на их алгебраические дополнения.

Для i- й строки:

или для j -го столбца:

Пример 7.1. Вычислить определитель разложением по элементам первой строки:

1∙(1+12+12 ) ∙(2+16+18 )+

3∙(4+8+27 ) ∙(8+4+18 )=

Теорема разложения позволяет заменить вычисление одного определителя n- го порядка вычислением n определителей (n- 1)-го порядка.

Однако для упрощения вычислений целесообразно для определителей высоких порядков использовать метод «размножения нулей», основанный на свойстве 6 раздела 5. Его идея:

Сначала «размножить нули» в некотором ряду, т.е. получить ряд, в котором только один элемент не равен нулю, остальные нули;

Затем разложить определитель по элементам этого ряда.

Следовательно, на основании теоремы разложения исходный определитель равен произведению ненулевого элемента на его алгебраическое дополнение.

Пример7.2. Вычислить определитель:

.

«Размножим нули» в первом столбце.

От второй строки вычтем первую, умноженную на 2, от третьей строки вычтем первую, умноженную на 3, а от четвертой строки вычтем первую, умноженную на 4. При таких преобразованиях величина определителя не изменится.

По свойству 4 раздела 5 можем вынести за знак определителя из 1-го столбца, из 2-го столбца и из 3-го столбца.

Следствие: Определитель с нулевым рядом равен нулю.

2. Теорема замещения:

Сумма парных произведений каких-либо чисел на алгебраические дополнения некоторого ряда определителя равна тому определителю, который получается из данного, если в нем заменить элементы этого ряда взятыми числами.

Для -й строки:

1. Теорема аннулирования:

Сумма парных произведений элементов какого-либо ряда на алгебраические дополнения параллельного ряда равна нулю.

Действительно, по теореме замещения получаем определитель, у которого в k -й строке стоят те же элементы, что и в i -й строке

Но по свойству 3 раздела 5 такой определитель равен нулю.

Т.о., теорему разложения и ее следствия можно записать следующим образом:

8. Общие сведения о матрицах. Основные определения.

Определение 8.1 . Матрицей называется следующая прямоугольная таблица:

Применяют также следующие обозначения матрицы: , или , или .

Строки и столбцы матрицы именуются рядами.

Величина называется размером матрицы.

Если в матрице поменять местами строки и столбцы, то получим матрицу, называемую транспонированной . Матрица, транспонированнаяс , обычно обозначается символом .

Например:

Определение 8.2 . Две матрицы A и B называются равными , если

1) обе матрицы одинаковых размеров, т.е. и ;

2) все их соответствующие элементы равны, т.е.

Тогда . (8.2)

Здесь одно матричное равенство (8.2) эквивалентно скалярных равенств (8.1).

9. Разновидности матриц.

1) Матрица, все элементы которой равны нулю, называется ноль-матрицей:

2) Если матрица состоит только из одной строки, то она называется матрицей-строкой, например . Аналогично этому матрица, имеющая только один столбец, именуется матрицей-столб­цом, например .

Транспонирование переводит матрицу-столбец в матрицу-строку и наоборот.

3) Если m = n , то матрица называется квадрат­ной матрицей n-го порядка.

Диагональ членов квадратной матрицы, идущая из левого верхнего угла в ее правый нижний угол, называется главной . Другая же диагональ ее членов, идущая из левого нижнего угла в ее правый верхний угол, именуется побочной .

Для квадратной матрицы может быть вычислен определитель det(A) .

Loading...Loading...
В начало страницы