Что такое электроемкость уединенного проводника. Электрическая емкость уединенного проводника. Энергия системы зарядов

Все вещества можно разделить на две группы – проводники и диэлектрики. К диэлектрикам относятся вещества, в составе которых не свободных электрических зарядов. К таким веществам относятся, например, керамика, стекло, резина и другие. К проводникам относятся вещества, в состав которых входят свободные заряды. К таким веществам относятся металлы, электролиты и другие.

Если уединенному проводнику сообщить заряд , то он распределится по поверхности проводника так, что напряженность поля внутри проводника будет равна нулю. Характер распределения заряда не зависит от самого заряда , а зависит от формы проводника и от окружающей проводника среды. Каждый новый заряд распределяется по поверхности проводника подобно предыдущему заряду. Таким образом, при увеличении заряда, сообщаемого проводнику в раз, поверхностная плотность заряда, или заряд, приходящийся на единицу площади поверхности проводника, также увеличится в раз в любой точке поверхности проводника. Таким образом, можно записать:

(1)

Здесь - поверхностная плотность заряда, - некоторая функция координат рассматриваемой точки поверхности.

Для вычисления потенциала поля, созданного заряженным проводником, разобьем поверхность проводника площадью (Рис. 1) на бесконечно малые элементы поверхности , несущие заряд , равный

(2).

Потенциал электростатического поля , созданного одним из таких точечных зарядов, в точке A (Рис. 1), находящейся на расстоянии от него, определяется формулой:

(3)

Здесь Нм 2 /Кл 2 – постоянная, которая определяется выбором системы единиц; Ф/м – электростатическая постоянная вакуума; - диэлектрическая проницаемость среды, окружающей проводник.

S
dS
dq
A

Чтобы найти потенциал электростатического поля, созданного всей заряженной поверхностью проводника в точке A, надо проинтегрировать формулу (3) по всей поверхности проводника. Так как поверхность проводника всегда замкнутая, то получаем:

(4)

Интеграл для заданной поверхности представляет собой некоторое постоянное число. Так как величина для заданных условий также является постоянной, то, как видно из формулы (4) потенциал электростатического поля, созданного уединенным проводником в некоторой заданной точке пропорционален его заряду.

Физическая величина, равная отношению заряда проводника к его потенциалу , называется электроемкостью уединенного проводника.

Подставляем в формулу (5) формулу (4) и получаем:

(6)

Из формулы (6) следует, что электроемкость уединенного проводника зависит от его формы, размеров и диэлектрической проницаемости среды, в которой проводник находится. Отсюда следует, что геометрически подобные проводники обладают емкостями, которые пропорциональны их линейным размерам. Кроме того, формула (6) показывает, что электроемкость проводника не зависит ни от его заряда, ни от потенциала.

Если электрический заряд проводника увеличить на величину , то его потенциал возрастет на величину , то есть в соответствии с формулой (5) имеем:

(7)

Таким образом,

(8)

Из формулы (8) следует, что электроемкость проводника показывает, какой заряд нужно сообщить проводнику, чтобы изменить его потенциал единицу (в системе единиц СИ на 1 вольт).

Опыт показывает, что при сообщении заряда Q проводнику потенциал его изменяется пропорционально на величину φ. Коэффициент пропорциональности

называется электроемкостью (емкостью) проводника.

Единицей емкости является Фарад : .

Потенциал шара радиуса R согласно (3.16):

Сравнивая с (3.24), получим формулу емкости проводящего шара :

C = 4πε 0 εR .(3.25)

Найдем радиус шара, емкость которого равна 1Ф:

.

Эта величина в 1400 раз больше радиуса Земли. Следовательно, Фарад очень большая единица емкости. Поэтому на практике емкость проводников (конденсаторов) измеряется в мкФ или пФ.

Для увеличения электроемкости проводников в технике используют устройства, называемые конденсаторами. Конденсатор состоит из двух проводников, обычно разделенных диэлектриком. Например, две параллельные плоские пластины, между которыми находится диэлектрик, образуют плоский конденсатор.

Электроемкость конденсатора определяется формулой, аналогичной (3.24):

, (3.26)

где φ 1 -φ 2 -разность потенциалов между пластинами конденсатора;

σ-поверхностная плотность зарядов на пластинах;

S-площадь пластины.

При наличии диэлектрика между пластинами с диэлектрической проницаемостью ε>1 имеем φ 1 - φ 2 =Еd или с учетом формулы (3.12):

Подставив это значение разности потенциалов в (3.26), получим формулу для емкости плоского конденсатора :

где d – расстояние между пластинами.

Емкость сферического конденсатора:

С=4π ε ε 0 r 1 r 2 /(r 2 -r 1) , (3.28)

где r 1 и r 2 -радиусы концентрических сфер.

Емкость цилиндрического конденсатора:

С=2π ε ε 0 ℓ·ℓn·r 1 /r 2 , (3.29)

где ℓ- длина полых коаксиальных цилиндров радиусами r 1 и r 2 .

Для увеличения емкости и варьирования ее возможных значений конденсаторы объединяют в батареи. При параллельном соединении емкость батареи:

При последовательном:

Энергия системы зарядов.

При формировании системы зарядов затрачивается энергия на преодоление их взаимодействия:

, (3.32)

где φ i -потенциал в точке, где находится заряд Q i , созданный всеми зарядами системы кроме Q i .

Энергия заряженного проводника

В соответствии с законом сохранения энергию W заряженного проводника можно определить как работу, которую затрачивают силы электрического поля проводника на его зарядку: заряд Q переносится малыми порциями dQ на проводник из бесконечности. Тогда элементарная работа, совершаемая при этом, согласно (3.17) равна.

Возьмем небольшой металлический полый шар и наденем его на электрометр (рис. 66). Пробным шариком начнем равными порциями q переносить заряды с шарика электрофорной машины на шар, касаясь заряженным шариком внутренней поверхности шара. Замечаем, что по мере увеличения заряда на шаре увеличивается и потенциал последнего относительно Земли. Более точные исследования показали, что потенциал проводника любой формы прямо пропорционален величине его заряда. Другими словами, если заряд проводника будет q, 2q, 3q, ..., nq , то его потенциал соответственно будет φ, 2φ, 3φ, ..., nφ . Отношение заряда проводника к его потенциалу для данного проводника есть величина постоянная:

Если взять подобное отношение для проводника иного размера (см. рис. 66), то оно также будет постоянным, но с другим числовым значением. Величину, определяемую этим отношением, назвали электроемкостью проводника. Электроемкость проводника

Скалярная величина, характеризующая свойство проводника удерживать электрический заряд и измеряемая зарядом, который повышает потенциал проводника на единицу, называется электроемкостью. Электроемкость - величина скалярная. Если один проводник имеет электроемкость в десять раз большую, чем другой, то, как видно из формулы электроемкости, чтобы их зарядить до одного и того же потенциала φ, надо, чтобы первый проводник имел заряд в десять раз больший, чем второй. Из сказанного следует, что электроемкость характеризует свойство проводников накапливать больший или меньший заряд при условии равенства их потенциалов.

От чего зависит электроемкость уединенного проводника? Чтобы выяснить это, возьмем два разных по величине металлических полых шара, надетых на электрометры. При помощи пробного шарика зарядим шары так, чтобы величины зарядов q были одинаковы. Видим, что при этом потенциалы шаров не одинаковы. Шар с меньшим радиусом зарядился до большего потенциала φ 1 , чем шар с большим радиусом (его потенциал φ 2). Так как заряды шаров одинаковой величины q = C 1 φ 1 и q = С 2 φ 2 , а φ 1 >φ 2 , то С 2 >С 1 . Значит электроемкость уединенного проводника зависит от величины его поверхности: чем больше поверхность проводника, тем больше его электроемкость. Такая зависимость объясняется тем, что заряжается только внешняя поверхность проводника. Электроемкость проводника не зависит от его материала.

Установим единицу измерения электроемкости проводника в системе СИ. Для этого в формулу электроемкости подставим значения q = 1 к и φ = 1 в:

За единицу электроемкости - фарада - принята электроемкость такого проводника, для повышения потенциала которого на 1 в нужно увеличить его заряд на 1 к. Электроемкость в 1 ф очень велика. Так, электроемкость Земли равна 1 / 1400 ф, поэтому на практике пользуются единицами, составляющими доли фарады: миллионной долей фарады - микрофарадой (мкф) и миллионной долей микрофарады - пикофарадой (пф) :

1 ф = 10 6 мкф 1 мкф = 10 -6 ф 1 пф = 10 -12 ф

1 ф = 10 12 пф 1 мкф = 10 6 пф 1 пф = 10 -6 мкф.

Задача 20. Имеются два положительно заряженных тела, первое имеет электроемкость 10 пф и заряд 10 -8 к , второе - электроемкость 20 пф и заряд 2*10 -9 к . Что произойдет, если эти тела соединить проводником? Найти окончательное распределение зарядов между телами.


соединения. Потенциал первого тела Потенциал второго тела Так как φ 1 >φ 2 , то заряды перейдут с тела с большим потенциалом на тело с меньшим потенциалом.

Уединенным называется проводник , вблизи которого нет других заряжен­ных тел, диэлектриков, которые могли бы повлиять на распределение зарядов дан­ного проводника.

Отношение величины заряда к потенциалу для конкретного проводника есть величина постоянная, называемая электроемкостью (емкостью ) С , .

Таким образом,электроемкость уединенного проводника численно равна заряду, который необходимо сообщить проводнику, чтобы изменить его потен­циал на единицу . Опыт показал, что электроемкость уединенного проводника зависит от его гео­метрических размеров, формы, диэлектрических свойств окружающей среды и не за­висит от величины заряда проводника.

Рассмотрим уединенный шар радиуса R, находящийся в однородной среде с диэлектрической проницаемостью e. Ранее было получено, что потенциал шара ра­вен . Тогда емкость шара , т.е. зависит только от его ра­диуса.

За единицу емкости принимается 1фарад (Ф). 1Ф - емкость такого уединенно­го проводника, потенциал которого изменится на 1В при сообщении заряда 1Кл. Фарад - очень большая величина, поэтому на практике используют дольные едини­цы: милли­фарад (мФ, 1мФ=10 -3 Ф), микрофарад (мкФ, 1мкФ=10 -6 Ф), нанофарад (нФ, 1нФ=10 -9 Ф), пикофарад (пФ, 1пФ=10 -12 Ф).

Уединенные проводники даже очень больших размеров обладают малыми ем­костями. Емкостью в 1Ф обладал бы уединенный шар радиуса, в 1500 раз большего радиуса Земли. Электроемкость Земли составляет 0.7 мФ.

Электроемкость характеризует способность проводников или системы из нескольких проводников накапливать электрические заряды, а следовательно, и электроэнергию, которая в дальнейшем может быть использована, например, при фотосъемке (вспышка) и т.д.

Различают электроемкость уединенного проводника, системы проводников (в частности, конденсаторов).

Уединенным называется проводник, расположенный вдали от других заряженных и незаряженных тел так, что они не оказывают на этот проводник никакого влияния.

Физическая величина, равная отношению электрического заряда уединенного проводника к его потенциалу

В СИ единицей электроемкости является фарад (Ф).

1 Ф - это электроемкость такого проводника, потенциал которого изменяется на 1 В при сообщении ему заряда в 1 Кл. Поскольку 1 Ф очень большая единица емкости, применяют дольные единицы: 1 пФ (пикофарад) = 10 -12 Ф, 1 нФ (нанофарад) = 10 -9 Ф, 1 мкФ (микрофарад) = 10 -6 Ф и т.д.

Электроемкость проводника не зависит от рода вещества и заряда, но зависит от его формы и размеров, а также от наличия вблизи других проводников или диэлектриков. Действительно, приблизим к заряженному шару, соединенному с электрометром, незаряженную палочку (рис. 1). Он покажет уменьшение потенциала шара. Заряд q шара не изменился, следовательно, увеличилась емкость. Это объясняется тем, что все проводники, расположенные вблизи заряженного проводника, электризуются через влияние в поле его заряда и более близкие к нему индуцированные заряды противоположного знака ослабляют поле заряда q.

Если уединенным проводником является заряженная сфера, то потенциал поля на ее поверхности

где R - радиус сферы, - диэлектрическая проницаемость среды, в которой находится проводник. Тогда

Электроемкость уединенного сферического проводника.

Обычно на практике имеют дело с двумя и более проводниками. Рассмотрим систему из двух разноименно заряженных проводников с разностью потенциалов между ними. Чтобы увеличить разность потенциалов между этими проводниками, необходимо совершить работу против сил электростатического поля и перенести добавочный отрицательный заряд -q с положительно заряженного проводника на отрицательно заряженный (или заряд +q с отрицательно заряженного проводника на положительно заряженный).

При этом увеличивается абсолютное значение обоих зарядов: как положительного, так и отрицательного. Поэтому взаимной электроемкостью двух проводников называют физическую величину, численно равную заряду, который нужно перенести с одного проводника на другой, для того чтобы изменить разность потенциалов между ними на 1 В:

Взаимная электроемкость зависит от формы и размеров проводников, от их взаимного расположения и относительной диэлектрической проницаемости среды, заполняющей пространство между ними.

Loading...Loading...